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Abstract. A closed subgroup of Sym(N) is called oligomorphic if for each k, the canonical

action on N[k] has only finitely many orbits. The group Aut(Q, <) is an example. Oligomorphic
groups are in a sense opposite to t.d.l.c. groups. I will report on an unexpected connection.

Each oligomorphic group G is Roelcke precompact, namely, each open subgroup has only
finitely double cosets. For such a G, Aut(G) carries a natural Polish topology. We show that
Inn(G) is closed in Aut(G). Thus Out(G) is also a Polish (in fact, non-Archimedean) group.
Next we show that for oligomorphic G, Out(G) is t.d.l.c. Joint work with G. Paolini.

These are notes for the talk André Nies gave at a 2024 conference in
honour of George Willis’ birthday.
By Aut(G) we will denote the group of (bi-)continuous automorphisms

of a Polish group G. The result that Out(G) = Aut(G)/ Inn(G) is t.d.l.c.
for each oligomorphic group G is [8, Theorem 3.3]. We use arguments
centred on non-Archimedean topological groups, with only a slight amount
of model theory.
I will first give background and explain the terms in the result, and then

proceed to the proof.

1. Is there a Polish topology on Aut(G)?

A Polish space is a separable topological space with a topology that is
induced by a complete metric. A Polish group G is a topological group
based on a Polish space.

Question 1.1. Given a Polish group G, can one topologise Aut(G) as a
Polish group so that the action Aut(G)×G → G is continuous?

We give a criterion to answer this in the affirmative for several classes
of Polish groups. Suppose we can assign to G a countable basis B(G)
for the topology such that B(G) is invariant under the action of Aut(G).
Then the action yields an injective homomorphism Aut(G) → Sym(B(G)),
where Sym(X) is the group of permutations on X. The group Sym(X)
has the topology of pointwise convergence: the pointwise stabilisers of
finite subsets of X form a neighbourhood basis of the identity, consisting
of open subgroups.

Fact 1.2. Suppose the range of the embedding Aut(G) → Sym(B(G))
is closed. Then the answer to Question 1.1 is in the affirmative, via the
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topology on Aut(G) that makes the embedding a homeomorphism. Thus,
one declares as open the subgroups of the form

{Φ ∈ Aut(G) : ∀i = 1 . . . n Φ(Ai) = Ai},

where A1, . . . , An ∈ B(G).

Proof. Note that the induced topology on Aut(G) is Polish (in fact, it
is non-Archimedean). An action of a Polish group on a Polish space is
continuous iff it is separately continuous (see [5]). So it suffices to show that
for each g ∈ G, the map Aut(G) → G given by Φ 7→ Φ(g) is continuous.
Suppose then that Φ(g) ∈ B where B ∈ B(G). Let A = Φ−1(B). Then
g ∈ A. If Θ ∈ Aut(G) is such that Θ(A) = Φ(A), then Θ(g) ∈ B. □

From now on we restrict to the context of infinite closed subgroups of
Sym(N); by G,H we usually denote such groups. Fig. 1 displays some
Borel classes that are invariant under conjugation in Sym(N), where the
arrows denote inclusion between classes. Prop. 1.6 yields an affirmative
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Figure 1. Some Borel classes of infinite closed subgroups of Sym(N)

answer to Question 1.1 for groups in the largest class (and thus all sub-
classes). For each G in this class, we find an Aut(G)-invariant basis B(G)
such that the range of the embedding Aut(G) → Sym(B(G)) is closed.

Definition 1.3. (i) A group G is Roelcke precompact (R.p.) if each open
subgroup U has only finitely many double cosets UgU , where g ∈ G.
(ii) G is locally Roelcke precompact if it has a R.p. open subgroup.

Trivially, each open subgroup of a R.p. group is also R.p. Thus, if G
is locally R.p., its R.p. open subgroups form a neighbourhood basis of
the identity. For background on (locally) Roelcke precompact groups, also
outside the class of non-Archimedean groups, see Rosendal [9] as well as
Zielinski [12].

Definition 1.4 (Cameron [1]). A closed subgroup G of Sym(N) is oligo-
morphic if for each n, the action of G on Nn has only finitely many orbits.
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Fact 1.5 ([10], Theorem 2.4). A closed subgroup G of Sym(N) is oligomor-
phic iff G has only finitely many 1-orbits and G is Roelcke precompact.

Note that being oligomorphic is a permutation group notion, while the
other notions are topological. A group G (always closed subgroup of
Sym(N)) is called quasi-oligomorphic [6] if it is homeomorphic to an oligo-
morphic group. The topological inverse limits of such groups are up to
homeomorphism the Roelcke precompact groups [10].
The following establishes a Polish topology on Aut(G) for locally R.p.

G.

Proposition 1.6. Given a locally R.p. group G, let B(G) be the set of
cosets of Roelcke precompact open subgroups, together with ∅. This is a
countable basis for G. The range of the embedding in Fact 1.2 is closed.

Proof. To show B(G) is countable, it’s enough to verify that it contains
only countably many subgroups. Each such subgroup U is the union of
finitely many double cosets of the point stabiliser of a finite subset of N,
so there are only countably many possibilities for U .
To show the range of the embedding is closed, we need a structure W(G)

(in the sense of model theory) with domain B(G) so that the range equals
Aut(W(G)). Take the intersection operation, together with the partial
binary operation A ·B that is defined when A is a left coset and B a right
coset of the same subgroup U , and then it is the usual product in G. For
the verification that this works see [3, Section 3]. The structure W(G) is
called the meet groupoid of G. □

Remark 1.7. For [quasi]-oligomorphic groups, every open subgroup is R.p.
For t.d.l.c. groups G, the R.p. open subgroups coincide with the compact
open ones. So the domain of the meet groupoid W(G) consists of the
compact open cosets.

For a locally compact group G, the group Aut(G) carries the Braconnier
topology. It is given by neighbourhoods of the identity of the form C(K,U),
for any compact K and open nbhd U of 1; here

α ∈ C(K,U) iff α(x) ∈ Ux ∧ α−1(x) ∈ Ux.

If G is discrete, then the Braconnier topology coincides with the topology
of pointwise convergence on Aut(G), because we can assume that U is the
trivial group, and of course each compact set is finite. The Braconnier
topology is the coarsest topology making the action Aut(G)×G → G con-
tinuous [2, Appendix I]. Since two Polish topologies on a group coincide in
case one is contained in the other [5, 2.3.4], this implies that the Bracon-
nier topology coincides with the one given by Prop 1.6. A direct proof of
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this fact is in [3, Section 9]. (It would be interesting to follow up on this
connection for the remaining classes of groups in Figure 1.)

2. When is Inn(G) closed in Aut(G)?

The group of inner automorphisms Inn(G) is a normal subgroup of
Aut(G). It is of interest whether it is closed in Aut(G), for in that case the
outer automorphism group Out(G) = Aut(G)/ Inn(G) is a Polish group.
Wu [11] gave an example of a discrete group L such that Inn(L) is not

closed in Aut(L). A slight modification yields a nilpotent-2 group of expo-
nent 3. (Curiously, this group is finite automaton presentable, and in fact
similar to the groups recently studied in [7].)

Example 2.1 (Similar to Example 4.5 in [11]). Let G be generated by
elements of ai, bi, c order 3 (i ∈ N), where c is central, with the relations
biaib

−1
i = aic, [ai, ak] = [ai, bk] = [bi, bk] = 1 for i ̸= k. An automorphisms

Φ of L is given by Φ(ai) = aic, Φ(bi) = bi, and Φ(c) = c. It is not inner,
but in the closure of Inn(G).

Proof. To check that Φ is indeed in Aut(G), note that c can be omitted
from the list of generators. Given a word w in ai, bk where each letter
occurs with exponent 1 or 2, use that Φ(w) = wck mod 3 where k is the
number of occurrences of ai’s. The inverse of Φ is given by ai 7→ aic

−1 and
the rest as before.
Write gn =

∏
i<n bi. We have gnaig

−1
n = aic for each i < n, and gnbig

−1
n =

bi for each i. Letting Φn be conjugation by gn, we have limnΦn = Φ in
Aut(G). For each g ∈ G, conjugation by g fixes almost all the generators.
So Φ is not inner. □

So that’s discouraging, but things look brighter on the left side of Fig-
ure 1.

Theorem 2.2 (extends Thm. 3.3 in [8]). Inn(G) is closed in Aut(G), for
each Roelcke precompact group closed subgroup G of Sym(N).
Proof. We follow the proof for oligomorphic groups [8, Theorem 3.3(i)]
The open cosets of G form a groupoid (a category where all morphisms are
invertible). For subgroups U, V of G, by Mor(U, V ) we denote the set of
right cosets of U that are left cosets of V .
Claim 1. Mor(U, V ) is finite, for any open subgroups U, V of G.
To see this, first note that Mor(U,U) is finite because each coset in it is a
double coset of U . Now suppose that there is a B ∈ Mor(U, V ). There is a
bijection Mor(U,U) → Mor(U, V ) via A 7→ A ·B. Thus Mor(U, V ) is finite
as required. This shows the claim.
A fact in the theory of Polish groups states that each Gδ subgroup of a

Polish group is closed (see [5, Prop. 2.2.1]); this relies on the Baire category
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theorem. So it suffices to show that Inn(G) is a Gδ subset of Aut(G). Let
(An)n∈ω be a listing of the open cosets of G without repetition. Given
Φ ∈ Aut(G), we will define a set TΦ of strings over some infinite alphabet
which is closed under prefixes, and thus can be seen as a rooted tree. The
alphabet consists of pairs of open cosets of G. To define the n-th level we
think o approximating some g ∈ G such that gAig

−1 = Φ(Ai) for i < n.
At the n-level we have certain pairs Bi, Ci of approximations, where i < n:

TΦ = {⟨(Bi, Ci)⟩i<n : Φ(Ai) = Bi · Ai · C−1
i ∧

⋂
i<n

(Bi ∩ Ci) ̸= ∅}.

The domains of such open cosets Bi and Ci are determined by the condition
that Φ(Ai) = Bi · Ai · C−1

i . By Claim 1, there are only finitely many
possibilities for cosets with given left and right domain. So the tree TΦ is
finitely branching.
Claim 2. Φ ∈ Aut(G) is inner iff TΦ has an infinite path.
For the verification see Claim 2 in the proof of [8, Theorem 3.3(i)], which
goes through for the general setting of R.p. groups. Assuming the claim,
we conclude the argument as follows. By König’s Lemma, TΦ has an in-
finite path iff each of its levels (i.e., strings of a length n) is nonempty.
Whether the n-th level of TΦ is nonempty only depends on the values
Φ(A0), . . . ,Φ(An−1), so the set of such Φ is open in Aut(G). Thus the
condition that each level is nonempty is Gδ. So the claim shows that the
subgroup Inn(G) is Gδ in Aut(G). □

Example 2.3. G = Aut(Q, <) is oligomorphic. The map π(x) = −x is in
the normaliser NG and not in G. A continuous automorphism of G not in
Inn(G) is therefore given by g 7→ π−1 ◦ g ◦ π. This is the only one up to
Inn(G): it is known that Out(G) ∼= NG/G which has two elements [?, Cor
1.6].

Remark 2.4. If G is R.p., then the topology on Inn(G) inherited from
Aut(G) is the expected one, namely the one given by quotient topology
of G by the centre. For, the centre Z = Z(G) is closed. We have a
Polish topology on G/Z by declaring UZ/Z open iff UZ is open in G. The
canonical isomorphism L : G/Z → Inn(G) is continuous. Since Inn(G)
is Polish as a closed subgroup of Aut(G), L is a homeomorphism by a
standard result in the theory of Polish groups (see e.g., [5, 2.3.4]).

The following is [8, Theorem 2.1].

Theorem 2.5. Let G be oligomorphic. Then NG/G is profinite, where NG

is the normaliser of G in Sym(ω).



6 ANDRÉ NIES

The result is proved using a model-theoretic technique: an oligomorphic G
equals Aut(M) for the so-called canonical structure for G (made out of the
n-orbits for all n ≥ 1). This M is ℵ0-categorical, which implies that the
G-invariant relations coincide with the first-order definable relations. Also,
NG = Aut(EM) where EM is a reduct of M , its so-called orbital structure.
The proof which we omit here consists of showing that Aut(EM)/Aut(M)
is a profinite group.
By [4] together with [8], every separable profinite group can be realised

as Out(G) = NG/G: the structure constructed in [4] has “no algebraicity”,
which implies by [8, Th. 4.7] that each automorphism of G is given as
conjugation by a permutation π ∈ NG.
Now let R : NG → Aut(G) be the homomorphism defined by R(π)(g) =

π ◦ g ◦ π−1. The following is part of [8, Theorem 3.3].

Theorem 2.6. (i) The subgroup range(R) is open in Aut(G).
(ii) The group Out(G) is t.d.l.c., having the compact group range(R)/ Inn(G)
as an open subgroup.

Proof. (i). For b, a ∈ ω, we will write [b, a] for the coset {g ∈ G : b = g(a)}.
Note that for a, b, c ∈ ω, if [c, a] ⊇ [b, a] ̸= ∅ then b = c.

Let a1, . . . , an represent the 1-orbits of G. It suffices to show that the
open subgroup {Φ ∈ Aut(G) : Φ(Gai) = Gai for each i} is contained in
range(R). Suppose that Φ is in this subgroup. Since Φ fixes each subgroup
Gai, for each cosetD = [b, ai], Φ(D) is also a left coset of Gai. Hence, by ??,
Φ(D) can be written in the form [d, ai]. Define a function πΦ : ω → ω by

πΦ(b) = d if Φ([b, ai]) = [d, ai], where [b, ai] ̸= ∅.
Clearly πΦ and πΦ−1 are inverses. So πΦ ∈ Sym(ω). The following estab-
lishes (i).

Claim. πΦ ∈ NG and R(πΦ) = Φ.
Write π = πΦ. To verify the claim, we first show that Φ([r, s]) = [π(r), π(s)]

for each r, s ∈ ω such that [r, s] ̸= ∅. Note that by hypothesis on Φ
and since Gai = [ai, ai], we have π(ai) = ai for each i. Also note that
Φ([b, c])−1 = Φ([c, b]) for each b, c ∈ ω. Let now i be such that r and s are
in the 1-orbit of ai. We have [r, s] = [r, ai] · [ai, s] = [r, ai] · [s, ai]−1. So

Φ([r, s]) = Φ([r, ai]) · Φ([s, ai])−1 = [π(r), ai] · [π(s, ai]−1 = [π(r), π(s)].

Next, for each h ∈ G we have {h} =
⋂

s∈ω hGs, and hGs = [h(s), s]. Then
{Φ(g)} =

⋂
s∈ω Φ([g(s), s]) =

⋂
s∈ω[π(g(s)), π(s)] =

⋂
t∈ω[π(g(π

−1(t))), t] =
{gπ}, as required. This shows the claim.

(ii). The kernel of R is the centraliser CG ofG in Sym(ω), which is a normal
subgroup of NG. This consists of the permutations that are definable in the
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canonical structure for G, so CG is a finite. So GCG is a normal subgroup of
NG. GCG is also closed in Sym(ω) becauseG has finite index in it. Since CG

is the kernel of R and R(G) = Inn(G), we have R−1(Inn(G)) = GCG. Thus
range(R)/ Inn(G) is topologically isomorphic to NG/GCG. By 2.6 NG/G
is compact. So NG/GCG is also compact as its topological quotient. □

To summarise, we have

Inn(G) ∼= G/Z(G) ≤c NG/CG ≤o Aut(G).

Taking the quotient by Inn(G), we get a t.d.l.c. group with its compact
open subgroup predicted by van Dantzig’s theorem:

NG/GCG ≤o Out(G).

3. Conclusion

Related work in progress with Philipp Schlicht started during his Auck-
land visit March-June 2024; it attempts to obtain the result in a purely
model-theoretic way. The work in progress is based on the notion of bi-
interpretations, and using them will hopefully lead to a better understand-
ing of the structure of Out(G).
At present we know that Out(G) for oligomorphic G can be any separable

profinite group [4]. We don’t have an example where Out(G) is properly
t.d.l.c., say discrete and infinite.
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